Director 8.5 Tutorial
rector utorta Date Produced: Jan 02
Exploring Environments
Author: Martin Agombar

Introduction

This tutorial aims to explain some approaches to making environments explorable, using Director,
to enable the end user to interact with the presentation.

Structure

One method of making a presentation explorable is to jump from part of the Score to another.
This can be done using markers and simple Lingo commands. If the presentation is large
however, this method can become unwieldy. A much better method, for large presentations, is to
jump from movie to movie.

Consider the structure below:

Forensic Science
Murder
Crime
hef Criminal
Theft Psvcholoav
Arson
Case
Histories

If you tried to make the above presentation using markers and Lingo the resulting Score be very
complicated and confusing. Not only this but the Projector would be very large since it would
have to contain all the elements of the presentation at once. Far better to have an opening movie
called “Crime”, which was then linked to other movies such as “Murder” or “Theft”. Providing all
the movies you created lived in the same folder as the Projector, your presentation would play
as if it was only one movie.

To link to another movie
You need to make at least two movies. In the case above, “Crime” would be the opening of
the presentation. “Murder” would be the opening of the murder section. “Case Histories”

would be a sub-group of that and so on.

Ensure all movies are saved in the same folder.

To jump to a new movie you need to create a button. Add the following script:

on mouseUp me You need to add the name of the

i ie “Murder” movie you want to open. Use only
9o to movie “Nurcer” < the name, there is no need to

include the extension.
end

Make a Projector. File > Create Projector

Add the movie that will open your presentation. Make sure you are saving to the folder
that contains all your Director movies for the project, then go Create...

Reminder: all movies must be in the same folder as the Projector

Using Lingo to make a moving backdrop

You may wish to create an environment that can be explored. For example, supposing you
wanted to create an underground cave. You might want the user to be able to move around
inside this cave. To do this you could move the background horizontally so that the user could
see what was to the left and right of the Stage.

In order to make a background move under the control of Lingo, we need to look at some simple
examples to see how this might be done.

Moving spites using Lingo

Sprites on the Stage are located using coordinates. These refer to the registration point of the
sprite. You can find the position of any sprite on the Stage, or change its position, using Lingo.
For example:

Create a simple sprite and make sure it is in Sprite Channel 1. Add the following script to this
sprite:

On exitFrame me

xpos=sprite(1).locH
ypos=sprite(1).locV

put Xpos, ypos
end
Open the Message Window. Window > Message (& + M)

Run the movie. The coordinates of the sprite in Sprite Channel 1 will appear.

LE] [&

=="1FF 18
st o e

== e
== 1P 16

L

NEIDE

[¢|»

Animate the sprite in some way and the coordinates will constantly change.

How sprite coordinates relate to the Stage in Director

The example above shows how the coordinates, and therefore position, of a sprite can be found.
The meaning of the coordinates is important to understand. They relate to the Stage and how it is
mapped out.

200 pixels

“«—> Stage

N
150 pixels

Registration point of
sprite

The position of the sprite is the distance in pixels measured across from the left edge of the Stage
and the distance measured downwards from the top edge of the Stage, i.e. (200 x 150).

We need to look at the script in more detail to see how it works.

Explanation of script
on exitFrame me

This part of the script is called an event handler. Event handlers always begin with the
word “on” An event handler is used to detect something when it happens, such as a key
press. In this case it responds to the Play Head leaving a frame. Every time this
happens, the handler will detect this. Whatever code is associated with the event handler
will then be carried out.

xpos=sprite(1).locH

Xpos is a variable. Its name is one | made up. It could have been anything. Its value is
only determined when it is made equal to something. One way to understand variables is
to imagine them as containers. They can be used to bring data from one place to
another. In this case xpos is being made equal to the horizontal position of the sprite
in Channel 1.

Sprite(1) is the sprite in Channel 1. To refer to sprites in other channels, simply change
the number held within the brackets.

locH is a property. It is one of the properties of sprite(1). Notice that sprite(1) is linked
to locH by a full stop. This is very important. In Lingo a full stop is always used to link a
property to an object.

ypos=sprite(1).locV

This expression makes the variable ypos equal to the vertical position of the sprite in
Channel 1.

put Xpos, ypos

The command put tells Director to display information in the Message Window. In this
case, the variables xpos and ypos are put into the Message Window.

end

This tells Director that the code for the event handler has ended.

Using coordinates to control the position of a sprite
To make a sprite jump to a new position, using Lingo, we need to make use of coordinates. Make
sure there is a sprite in Channel 1, positioned centrally. Create a button and attach the following
script:

on mouseUp me

sprite(1).locH=0

end
Play the movie and hit the button. The sprite in Channel 1 will jump to the left. This is because
the script has changed the horizontal position (given by locH) of the sprite in Channel 1, to
zero. This equates to the left-hand edge of the Stage.

Continuous movement sprites using Lingo

In the previous example, we moved a sprite using a button. With a small change to the scripting,
we can animate the sprite.

Make sure there is a sprite in Channel 1. Add the following script to frame 1 of the Script
Channel.

property Xpos

on exitFrame me

Xpos=xpos+1

sprite(1).locH=xpos

put xpos

end
Run the movie. You will see the sprite in Channel 1 move slowly to the right. What is happening?
To make the sprite move, the horizontal position of the sprite has to change over time. The
expression xpos=xpos+1 is used to create a number that increases by one at regular intervals.
The expression works in the following way. The on ExitFrame me handler responds each time
the Play Head leaves a frame. This happens 30 times per second (if the frame rate is 30 frames
per second). Each time the handler is triggered, the script is run.
To begin with, xpos has a value of zero. Because it has been made a property, using the line
property xpos, at the very top of the script, it is able to remember its value. Director moves
through the script line by line until it reaches the line xpos=xpos+1. This expression adds one to
Xpos. so once the script has run, xpos has the value of one, which it then remembers.
In a very short time, the on ExitFrame me handler is triggered again. Since xpos now has a
value of one, which it has remembered, when another one is added, its value is increased to

two. This process continues indefinitely, increasing the value of xpos by one each time.

sprite(1).locH=xpos makes the horizontal position of sprite(1) equal to xpos. Since xpos is
constantly increasing in value, the sprite is forced to move further and further to the right.

You can check xpos using the Message Window.

Making a backdrop
You can make a backdrop in two ways.

Draw a backdrop
Use a digital camera

Whichever method you use you need to make sure of two things:
You create two images, each the width of the Stage.
The two images form a continuous loop.
Making a backdrop using a digital camera
1 You need to take a series of photographs, each one slightly overlapping the last.

Obviously these need to be a 360° panoramic view. Make sure you have enough
photographs for a complete circle.

2 Import the pictures into PhotoShop.

3 Create a new document. Make it at least as wide as all the images arranged in a line, i.e.
if you had six images, each 1800 pixels wide, make the new document about 12 000
pixels wide.

4 Copy and paste the images into the new document so they are in a line (on separate

layers). You will find they do not match exactly. You need to blend in the edges of each
one to get the desired result.

5 To blend in the edges do the following:

o . e lirarylpsd @ 1 2% (layer Zayersdasky 0 @EH|

1T Do 2 BRLDT TR] Al ¥

Guides

Set up guides to mark out the ends of the images. The images will overlap to some degree.

Create a mask for the second image. Click on the Create Mask icon in the Layers Palette.

[Dissalve + | Opacity:
teck: 3 O O+ Of
® | = Layer 4

e C—Layer 3
Mask icon

B_Jlayer 1

F
el
-

 — Y T 7]

Gl Olo|els| s

[

Next, click on the mask icon within the layer containing the second image. This ensures that
you are working on the mask itself and not the image.

Create Mask

Use the rectangular marquee tool to draw a rectangle where the first and second images overlap.
Make sure you have Snap to Guide selected. View > Snap To > Guides

With the overlap between images 1 and 2 still selected, use the gradient fill tool to produce a
gradient from black to white within the selection. The direction of the gradient should be from
black at the end of the image to white as you move towards its centre. You should have created
a rectangular shaped gradient mask. This will blend image 1 to image 2.

Repeat this operation for the remaining images.

6

7

10

11

12

13

14

15

16

Flatten the image. Layers > Flatten

You now have one layer containing all of your picture. You now need to make sure the
ends will match when they are put together.

Set up a guide to mark the beginning of the image. Do the same to mark a position just
before the end of the image. Select the end portion of the image using the Rectangular
Marquee tool. Jump this to a new layer. & + J

Use the Move tool to position the end portion of the image to just before the beginning
so the two images appear to butt up. Move the end portion further to the right so that it
overlaps the first image. Find a position where the two will blend together successfully.
Use the mask technique explained above to blend the two images.

Flatten the image. Layers > Flatten

Use the guide at the beginning of the image to select the area you have added when
you moved the end portion. Use the Rectangular Marquee tool to select this area. Use
the Move tool to drag this area rightwards to the end of the image, where you set up a
guide. Its end will now match the beginning of the image.

Crop the top and bottom of the image to tidy up any problems.

Resize the image to exactly twice the width of the Stage you are working on in
Director. Image > Image Size

Set up a guide exactly half-way along the image.
Copy and paste each half of the image into a new document.

Save each half. Go File > Save for Web. Optimise appropriately.

Building the moving backdrop in Director

The following example assumes a stage size of 640*480. Other stage sizes will require the final
script to be adjusted accordingly.

1

Import the two images you have created. Position them so they are butted up against
each other.

The movement of the two halves needs to be controlled by a user action. Two invisible
sprites, at either end of the Stage, will trigger the movement.

Create an invisible sprite. Use the Rectangular Shape tool in the main toolbar. Make
sure the type of line used is none. Position the sprite at the left-hand edge of the Stage
as shown. Reuse the cast member to create the right-hand sprite.

Invisible

Add the following script to the left-hand sprite:
global gLeft

on mouseEnter me
gLeft=TRUE

end

on mouselLeave me
gLeft=FALSE

end

This sets the global variable gLeft to TRUE, if the mouse has entered the invisible sprite
and FALSE if it has left the sprite. A global variable is one that can be read anywhere in
the movie. It is a way of communicating to other sprites. By doing this the two images of
the backdrop can be told that they need to move.

Add the following script to the right-hand invisible sprite:

global gRight

on mouseEnter me
gRight=TRUE

end

on mouselLeave me
gRight=FALSE

end

We now can tell the two sprites, which comprise the backdrop, whether they need to
move right or left.

Finally, we need to add a script to each of the two sprites to make them move. The script
does two things. Firstly, it moves the sprites according to whether the left or right invisible

sprite has been rolled over. Secondly, if a sprite has moved beyond the limits of the
Stage, it is shifted to the other end of the Stage. This gives the impression of a
continuous, flowing backdrop.

Add the following script to both of the sprites comprising the backdrop. Remember, you
only need to write the script once. Drag the script in from the Cast to reuse.

Remember to name your scripts appropriately

global gRight, gLeft,
property rate, sprt, sWidth

on beginSprite me
sprt=me.spriteNum
sWidth=sprite(sprt) .width
end

on exitFrame me
rate=5

if gRight =TRUE then

sprite(sprt) . locH=sprite(sprt).locH+rate
end if

if gLeft =TRUE then

sprite(sprt).locH=sprite(sprt).locH-rate
end if

it sprite(sprt).locH <= -640 then
sprite(sprt).locH=sprite(sprt).LocH+1280
end if

it sprite(sprt).locH >= 640 then

sprite(sprt).locH=sprite(sprt).LocH-1280
end if

end

